What Is Earthquake Engineering?
Earthquake Engineering is also known as Seismic Engineering. As we have seen many cases wherein the earthquake has been a disaster for people and many have lost life. The need for building structures that can withstand the seismic force of nature and modifying the construction method is Seismic Engineering. One of the most important aims of earthquake engineering id the proper engineering and design of buildings by building code, to minimize damage due to earthquakes.Why Earthquake Engineering?
This is the science of the performance of buildings and structures when subjected to Seismic loading and it is the Earthquake engineer who ensures the proper design of buildings.Skills You Have:
- Advanced Mathematics, Advanced Physics.
- Knowledge of Mechanical Engineering, Geo-Technical Engineering (In India the first-year students get this basic knowledge)
- Advanced Computer Science
- Knowing the IS codes
Here are some examples:
- Tuned Mass Dampers:
An example of tuned mass dampers can be found in China's Shanghai Tower, the world's second-tallest building, standing 2073 feet, because of the building's massive size, traditional dampers were not a realistic option. This maximizes the damping effect of the system during seismic shock absorbers keep the weight from swinging too quickly during seismic events or occurrences that the potential to cause increased structural sway.
Some improvement in this traditional massive mass damper's, additional control system, such as an electromagnet, to limit the motion of the damper's pendulum element.
- Controlled Rocking:
The controlled rocking system prevents damage by minimizing the drift that occurs in a structure during an earthquake. These high-performance systems utilize braced steel frames that have elastic properties, this allows the steel frames to rock upon their foundation.
- Steel Plate Shear Walls:
In many high-risk seismic regions of Japan and North America, we can see a promising alternative for the earthquake-resistant systems where the steel plate shear wall system has been used to reinforce building since the 1970s. This design is such that they absorb stress and bend but do not entirely buckle under pressure. The walls are also considerably thinner, offering a similar level of strength, reducing construction cost, and reducing building weight, all of this without compromising public safety.
- Lead Rubber Bearing:
Lead Rubber bearings are comprised of a lead core set within a rubber housing, which is then encased between two thick steel plates and fixed at the base of a building's foundation. The Seismic waves caused by the earthquake weakens the stability of buildings. To withstand an earthquake, buildings need to be designed with seismic control especially taller buildings, as their collapse could cause significant isolation. This Lad Rubber Bearing passive method isolates the base of a structure from its foundation that can effectively deflect or absorb the vibration caused by seismic waves.
- Seismic Cloaking:
This innovation revolves around the theory that seismic waves pass energy between the potential energy stored in the planet's crust and the kinetic energy within the seismic waves itself. Test have shown that under the correct circumstances, the oscillations of seismic cloaking is far-reaching. The downside of this system is that it requires seismic cloak roughly equal to the size of the structure being protected. There's also the potential damage to neighboring structures when these surrounding areas.
Ground Motion Modeling, Damage Potential of Ground motion, Design, and experimentation are some other advancements in Earthquake Engineering.
Examples:
- Taipei 101, Taipei
- Transamerica Pyramid, San Francisco
- Yokohama Landmark Tower, Yokohama
- Utah State Capital Building, Salt Lake City
- U.S. Bank Tower, Los Angeles
- Roppongi Hills Mori Tower, Tokyo
- Wilshire Grand Center, Los Angeles
- Philippine Arena, Santa Maria
- Torre Mayor, Mexico City
Your article isn’t only useful but it is additionally really informative. Thank you because you have been willing to share information with us. Jindal Steel Distributor India
ReplyDeleteThank You so much. Means a lot.
DeleteYou have provided a richly informative article about Earthquake Engineering. It is a beneficial article for me and also helpful for others. Thanks for sharing this information here. surrey piling contractors
ReplyDeleteThankyou So much. And thanks for commenting. Will ensure that any new technology come will update it here.
DeleteThis information is meaningful and magnificent which you have shared here. I am impressed by the details that you have shared in this post and It reveals how nicely you understand this subject.high end architectural metal solution in NYC
ReplyDeleteClearly, It is an engaging article for us which you have provided here about steel. This is a great resource to enhance knowledge about it. Thank you.
ReplyDeleteSteel Buildings Ontario
A very delightful article that you have shared here. Your blog is a valuable and engaging article for us Laser Cutting Services, and also I will share it with my companions who need this info. Thankful to you for sharing an article like this.
ReplyDeleteYou have done good work by publishing this article here. I found this article too much informative, HDPE tubes
ReplyDeleteand also it is beneficial to enhance our knowledge. Grateful to you for sharing an article like this.
I will share it with my other friends as the information is really very useful.Read more info about Investment Casting Parts Online. Keep sharing your excellent work.
ReplyDelete